miércoles, 16 de mayo de 2012

Tema 12.- (2) ESTRUCTURA DE LA MATERIA

 Para estudiar este apartado puedes completarlo con los apuntes siguientes:
Únicamente debes bajarte las páginas que te digan en clase.

4.- ESTRUCTURA DE LA MATERIA . EL ÁTOMO
 La materia esta formada por átomos
Actualmente sabemos que la materia se encuentra compuesta de átomos. Estos átomos poseen una determinada estructura.

atomo4.jpg
Divisibilidad del átomo
En el núcleo se encuentran los protones y neutrones.
Los protones poseen carga eléctrica positiva, mientras que los neutrones no tienen carga.

En la corteza se encuentran los electrones, orbitando en torno al núcleo y poseen carga eléctrica igual a la de los protones pero de signo negativo.
 
http://www.sabelotodo.org/materia/imagenes/figura3.jpg
Los átomos de los distintos elementos se diferencian en el nº de estas partículas que contienen, y por ello se utiliza para describir su estructura el concepto de:

 Nº ATÓMICO  y Nº MÁSICO.
El nº atómico es el nº de protones que hay en el núcleo de dicho átomo.

El nº másico es la suma de protones y neutrones que contiene el núcleo del átomo.

Debido a la neutralidad eléctrica del átomo, el nº atómico también nos indicará el nº de electrones que se encuentran en la corteza.

Por último, un átomo puede perder o ganar electrones, transformándose en un ión (especie química con carga eléctrica).
Si el átomo pierde electrones se convierte en un ión positivo: catión.
Si el átomo gana electrones se convierte en un ión negativo: anión

El sistema  periódico.-
La tabla periódica de los elementos clasifica, organiza y distribuye los distintos elementos químicos, conforme a sus propiedades y características; su función principal es establecer un orden específico agrupando elementos.
Suele atribuirse la tabla a Dmitri Mendeléyev, quien ordenó los elementos basándose en la variación manual de las propiedades químicas, si bien Julius Lothar Meyer, trabajando por separado, llevó a cabo un ordenamiento a partir de las propiedades físicas de los átomos. La forma actual es una versión modificada de la de Mendeléyev; fue diseñada por Alfred Werner.

La historia de la tabla periódica está íntimamente relacionada con varios aspectos del desarrollo de la química y la física:
  • El descubrimiento de los elementos de la tabla periódica.
  • El estudio de las propiedades comunes y la clasificación de los elementos.
  • La noción de masa atómica (inicialmente denominada "peso atómico") y, posteriormente, ya en el siglo XX, de número atómico.
  • Las relaciones entre la masa atómica (y, más adelante, el número atómico) y las propiedades periódicas de los elementos.
     

  • http://www.mcgraw-hill.es/bcv/tabla_periodica/tabla420.gif
 http://upload.wikimedia.org/wikipedia/commons/thumb/b/b6/PTable_structure.png/400px-PTable_structure.png

http://www.librosvivos.net/smtc/hometc.asp?temaclave=1075
5.- LAS SUSTANCIAS PURAS


http://platea.pntic.mec.es/~jrodri5/web_enlaces_quimicos/imagenes/sustpur.gif


Las sustancias puras están formadas por partículas (átomos o moléculas) iguales, tienen una composición fija, no pueden separase por medios físicos. Tienen propiedades específicas: densidad, la temperatura permanece constante en los cambios de estado temperatura de ebullición y fusión), solubilidad, conductividad térmica y eléctrica y numerosas propiedades más.
Por ejemplo el alcohol etílico (componente de las bebidas alcohólicas) tiene, entre otras, las siguientes propiedades específicas:
- densidad 0,79 g/ml
- punto de fusión –114ºC 
- punto de ebullición 78,5ºC 

Además, es incoloro, de olor característico y totalmente miscible con el agua. Otro ejemplo: Cuando calentamos y evaporamos agua pura no queda ningún residuo y el líquido obtenido al condensar el vapor agua sigue siendo agua pura.
Para distinguir una sustancia pura de otra nos basamos en sus propiedades. 

Las sustancias puras a su vez se clasifican en sustancias simples y sustancias compuestas. En las sustancias simples encontramos a los elementos químicos, y en las sustancias compuestas encontramos a los compuestos químicos.
Las sustancias simples pueden ser moleculares o atómicas, y no se descomponen en otras sustancias distintas. Ejemplo: oxígeno, nitrógeno. 

Los elementos son sustancias puras más simples. Están formados por el mismo tipo átomos, y no pueden descomponerse. Se representan mediante símbolos.
El Ozono ( O3) y el oxígeno molecular (O2) están formados por átomos de oxígeno. Ejemplo: el elemento oro estará formado solamente por átomos de oro. 

Los compuestos están formados por moléculas y éstas están formadas por unión de átomos de distintos elementos. Todas las moléculas del mismo compuesto son iguales entre sí. Los compuestos químicos pueden separarse por medios químicos.
Ejemplo: el agua pura estará formado solamente por moléculas de agua El agua puede descomponerse en sus elementos Hidrógeno y Oxígeno por un medio químico (la electrólisis).
 http://3.bp.blogspot.com/_WFk6xFr3Ois/TOMFNtRCskI/AAAAAAAAAA8/rXfaarbBpng/s1600/elementos+compuestos.gif

Esta era una clasificación atendiendo a si constaban de un solo tipo, o de varios tipos de átomos. Sin embargo es mucho más interesante establecer una clasificación atendiendo a cómo están unidos (enlazados) estos átomos entre si. Conociendo los diferentes tipos de uniones podrán predecirse propiedades y comportamiento de una gran diversidad de sustancias.

Las fórmulas químicas su significado
 Formulación química es la encargada de regular las convenciones a emplear en la utilización de fórmulas químicas. Una fórmula química se compone de símbolos y subíndices, correspondiéndose los símbolos con los de los elementos que formen el compuesto químico a formular y los subíndices con las necesidades de átomos de dichos elementos para alcanzar la estabilidad molecular. Así, sabemos que una molécula descrita por la fórmula H2SO4 posee dos átomos de Hidrógeno, un átomo de Azufre y 4 átomos de Oxígeno.

se Representan por:

Las maneras de formular un compuesto tienen que ser aceptadas por la IUPAC, "International Union of Pure and Applied Chemistry" Existen tres formas de nombrar una fórmula química:

* Nomenclatura sistemática, la cual se vale de los prefijos numerales griegos mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, deca-, etc, para nombrar el número de átomos de cada elemento en la molécula.
* Nomenclatura de Stock, utilizada con elementos que pueden usar distintos estados de oxidación, y caracterizada por incluir la valencia con la que actúa el elemento entre paréntesis y en números romanos.
* Nomenclatura clásica o tradicional, la cual se vale de los prefijos y sufijos hipo-oso, -oso, -ico y per-ico, según la valencia con la que actúen los elementos.

Así, por ejemplo, la fórmula Fe2O3 podemos nombrarla respectivamente:

* Trióxido de dihierro
* Óxido de hierro (III)
* Óxido férrico

Y la fórmula FeO podemos nombrarla respectivamente:

* Monóxido de hierro
* Óxido de hierro (II)
* Óxido ferroso

Sin embargo esto resulta demasiado general como para poder formular cualquier compuesto. Por lo cual procederemos a explicar cómo se formulan.



 Explicar el significado de las fórmulas que aparecen a continuación: O2, O3, NaF, C4H10 (butano), CO2
La fórmula O2 indica que en dicha sustancia (oxígeno molecular) existen dos átomos del elemento oxígeno enlazados.

En el caso de O3 (ozono) hay tres átomos de oxígeno agrupados.

En el NaF (fluoruro sódico), por cada átomo de sodio hay un átomo de flúor.

En el C4H10 (butano), cuatro átomos de carbono se agrupan con diez átomos de hidrógeno.

En el CO2, un átomo de carbono se combina con dos átomos de oxígeno.

las sustancias atómicas

Esta era una clasificación atendiendo a si constaban de un solo tipo, o de varios tipos de átomos. Sin embargo es mucho más interesante establecer una clasificación atendiendo a cómo están unidos (enlazados) estos átomos entre si. Conociendo los diferentes tipos de uniones podrán predecirse propiedades y comportamiento de una gran diversidad de sustancias.

Ahora veremos una clasificación atendiendo a cómo están unidos (enlazados) esos átomos entre si en la naturaleza:

SUSTANCIAS PURAS
Átomos aislados

* Sólo los gases nobles y los metales en estado de vapor.
No hay enlace.


Ejem:He, Ne, Ar, Fe (vapor),...
Sustancias moleculares
(Covalentes)


* La unidad es la molécula.
* Los átomos se unen formando moléculas, y estas a su vez pueden estar aisladas en los gases, o agrupadas (más adelante se analizarán las fuerzas intermoleculares) en los sólidos y líquidos.
* Pueden ser gases, líquidos o sólidos.



* Un tipo especial de este tipo de sustancias son los cristales covalentes continuos. (Forman redes similares a las del enlace iónico pero los enlaces son covalentes, como la sílice SiO2 y el diamante, carbono puro)
Átomos unidos mediante ENLACE COVALENTE.

Los sólidos forman cristales covalentes.
Ejem:
*gases: N2,Cl2,NH3, CH4
*líq:H2O,CH3OH, gasolina
*sól: azúcar, naftalina.
Sustancias iónicas

* No hay moléculas.
* Red continua de iones.
* Casi siempre sólidos.
Átomos unidos mediante ENLACE IÓNICO.

Los sólidos forman cristales iónicos.
Ejem:(sales, óxidos, hidróxidos)
ClNa, CaO, Fe2O3, NaOH
Sustancias atómicas

* No hay moléculas.
* Red continua de átomos.
Átomos unidos mediante ENLACE METÁLICO.

Los sólidos metálicos forman cristales metálicos.
Ejem:
Fe, Cu, Au, Ni

 Llamamos sustancias atómicas a las sustancias formadas por átomos que no se asocian.
http://www.santamariadelpilar.es/departamentos/quimica/principalsustanciasatomicas.htm
Las sustancias moleculares
 Están constituidas de moléculas; es decir, agrupaciones de un número concreto de átomos que se encuentran unidos dos a dos mediante enlace covalente. Se representa mediante la fórmula molecular.
Son las únicas sustancias que podemos considerar que tienen moléculas como tales entes que se pueden aislar.
Propiedades.
Son las habituales de los enlaces covalentes:
Temperaturas de fusión bajas. A temperatura ambiente se encuentran en estado gaseoso, líquido (volátil) o sólido de bajo punto de fusión.
La temperaturas de ebullición son igualmente bajas.
No conducen la electricidad en ningún estado físico dado que los electrones del enlace están fuertemente localizados y atraídos por los dos núcleos de los átomos que los comparten.
Son muy malos conductores del calor.
La mayoría son poco solubles en agua. Cuando se disuelven en agua no se forman iones dado que el enlace covalente no los forma, por tanto, si se disuelven tampoco
http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/enlaces/smoleculs.htm
sustancias iónicas
Las sustancias iónicas forman redes cristalinas en estado sólido debido a la forma en la que se acomodan las moléculas del compuesto. Esto provoca que sean sólidos frágiles (no se pueden deformar, sólo fracturar).
En disoluciones acuosas, los compuestos iónicos se separan en cationes y aniones (ver ionización) y se pegan al elemento con carga opuesta (en este ejemplo: Na+ O-, Cl- H+ ) y ocurre una disociación electrolítica, donde el agua se convierte en conductora de electricidad debido al flujo de iónes en presencia de una corriente eléctrica.

 http://platea.pntic.mec.es/pmarti1/educacion/3_eso_materiales/b_iv/conceptos/conceptos_bloque_4_1.htm
http://plinios.tripod.com/sustancias.htm
http://www.santamariadelpilar.es/departamentos/quimica/propiedadesionicas.htmç
 http://www.quimi-red.com.ar/propiedades_sustancias.htm

Ampliando
Representación de las Sustancias:
Para representar las sustancias se emplean fórmulas, que son combinaciones de símbolos de elementos químicos y números que se colocan como subíndices e indican cuantos atomos de cada tipo hay  en una molécula o cristal de esa sustancia. Ejemplos:
SUSTANCIA FÓRMULA COMPOSICIÓN
metano
CH4
un átomo de C y 4 átomos de H
oxígeno
O2
dos átomos de oxígeno
¿Qué ocurre cuando unimos dos sustancias?
Si dejamos salir el gas hidrógeno de un globo, se mezcla con el aire sin sufrir ninguna transformación. Sin embargo, si prendemos un fósforo en la boca del globo oiremos una pequeña explosión, pues el hidrógeno se combina con el oxígeno del aire y se forma una nueva sustancia: el agua.
  • En una mezcla, las propiedades de sus componentes no varian y estos se pueden separar por medios físicos.
  • En una combinación, los componentes pierden sus propiedades como consecuencia de uan transformación química. 
Abundancia de los elemetos químicos
Elementos en los seres vivos
Magteriales de interés.
Plásticos
Metales
Superconductores

lunes, 14 de mayo de 2012

TEMA 12.-(1) DIVERSIDAD Y ESTRUCTURA DE LA MATERIA

12.- DIVERSIDAD Y ESTRUCTURA DE LA MATERIA

1.- CLASIFICACIÓN DE LA MATERIA
- SUSTANCIAS PURAS.- Las sustancias puras son aquellas que están formadas por partículas iguales.
Tienen propiedades especificas bien definidas. Estas propiedades no varían, aun cuando dicha sustancia pura se encuentre formando parte de una mezcla.
Algunas de estas propiedades son:
  • El color
  • El sabor
  • El olor
Por ejemplo, el agua líquida tiene una densidad de 1 g/cm3,y esta propiedad se mantiene constante, incluso si el agua forma pare de una disolución.
Son sustancias puras el agua, el alcohol, el nitrógeno, el oxígeno,...

Para distinguir una sustancia pura de otra nos basamos en sus propiedades.
Las sustancias puras a su vez se clasifican en sustancias simples y sustancias compuestas. En las sustancias simples encontramos a los elementos químicos, y en las sustancias compuestas encontramos a los compuestos químicos.
Las sustancias simples pueden ser moleculares o atómicas, y no se descomponen en otras sustancias distintas. Ejemplo: oxígeno, nitrógeno.
Los elementos son sustancias puras más simples. Están formados por el mismo tipo átomos, y no pueden descomponerse. Se representan mediante símbolos.
El Ozono ( O3) y el oxígeno molecular (O2) están formados por átomos de oxígeno. Ejemplo: el elemento oro estará formado solamente por átomos de oro.
Los compuestos están formados por moléculas y éstas están formadas por unión de átomos de distintos elementos. Todas las moléculas del mismo compuesto son iguales entre sí. Los compuestos químicos pueden separarse por medios químicos.
Ejemplo: el agua pura estará formado solamente por moléculas de agua El agua puede descomponerse en sus elementos Hidrógeno y Oxígeno por un medio químico (la electrólisis).

Elementos.- Elemento químico: Un elemento es una sustancia pura que no se puede descomponer en otras mas sencillas que ellas. Esto se debe a que están formados por una sola clase de átomos. Las láminas de cobre por ejemplo, están formadas únicamente por átomos de cobre.
 A la fechas se han identificado 112 elementos, de los cuales 92 se encuentran en forma natural en la Tierra y los demás se han obtenido artificialmente.
 Compuestos.- Compuesto químico: Un compuesto es un tipo de materia constituido por dos o más elementos diferentes unidos químicamente en proporciones definidas. Por ejemplo, 1gr. de cloruro de sodio siempre contiene 0,3932gr. de sodio y y 0,607gr. de cloro.
cloruro de sodio
Las moléculas de un compuesto están formadas por átomos diferentes y sus propiedades son distintas de las propiedades de los elementos individuales que lo forman.

http://www.slideshare.net/guest657587/las-sustancias-puras-386991

-MEZCLAS HOMOGENEAS Y HETEROGENEAS
Una mezcla es un sistema material formado por dos o más sustancias puras pero no combinadas quimicamente. En una mezcla no ocurre una reacción química y cada uno de sus componentes mantiene su identidad y propiedades químicas.
 Los componentes de una mezcla pueden separarse por medios físicos como destilación, disolución, separación magnética, flotación, filtración, decantación o centrifugación.

2.- LAS MEZCLAS HOMOGENEAS.- La mezcla homogénea es aquella en la que sus componentes no se perciben a simple vista, ni siquiera con la ayuda del microscopio.  Está formada por un soluto y un solvente.

Una solución es una mezcla homogénea de dos o más sustancias dispersadas como moléculas, átomos o iones, en vez de permanecer como  agregados de regular tamaño.




Existen soluciones donde las  sustancias que se mezclan tienen distintos estados de agregación; así, hay  soluciones de gas en gas (en realidad, todas las mezclas de gases son  soluciones), de gas en líquido, de líquido en líquido, de sólido en líquido, de sólido ensólidos (aleaciones), etc.
Una de las sustancias que forman la solución se denomina disolvente; suele ser el componente que se encuentra en mayor cantidad. La otra u otras sustancias en la solución se conocen como solutos.



Estado de la
solución
Estado del
disolvente
Estado del
soluto
Ejemplo
Gaseoso
Gaseoso
Gaseoso
Aire
Líquido
Líquido
Gaseoso
Oxígeno en agua
Líquido
Líquido
Líquido
Alcohol en agua
Líquido
Líquido
Sólido
Sal en agua
Sólido
Sólido
Gaseoso
Hidrógeno en Platino
Sólido
Sólido
Líquido
Mercurio en Plata
Sólido
Sólido
Sólido
Plata en Oro






 El solvente o disolvente es el componente considerado como  la sustancia que disuelve al otro componente o soluto. Esta distinción, aunque arbitraria, es bastante útil.  Cuando ambos son líquidos, y uno de ellos es mucho más abundante que el otro, se le llama disolvente al más abundante: en el vinagre, el agua es el  disolvente y el ácido acético, el soluto; en un ácido acético ligeramente contaminado con agua, la situación es inversa.  Pero en  ocasiones, la denominación de soluto y solvente se realiza simplemente  adjudicando el primer nombre a aquella sustancia que nos interesa más desde el punto de vista químico; así, en las soluciones concentradas de ácido sulfúrico (tienen 98 g de ácido por cada 2 g de agua) se llama convencionalmente soluto al ácido sulfúrico.

 De acuerdo a la cantidad de soluto disuelto en cierta cantidad de solvente, las soluciones pueden denominarse:
 a) Diluida: es aquella que contiene solamente una  pequeña  cantidad de soluto (o solutos) en relación a la cantidad de disolvente. 
 b) Concentrada: es aquella que contiene una gran proporción de soluto. Estos términos son tan imprecisos como las palabras  "grande"  o "pequeño", en realidad, estos términos serán usados de acuerdo a  la máxima cantidad de soluto que puede disolverse -en esas condiciones- en esa cantidad de solvente (que obviamente cambia de acuerdo a  las sustancias consideradas). 
 c) Saturada: precisamente, aquellas soluciones que contienen la  máxima cantidad de soluto posible disuelta en cierta cantidad de solvente, se denominan saturadas. La concentración de  soluto  en  esas soluciones se denomina solubilidad; esta cantidad varía, en general, con la temperatura.
 d) Sobresaturada: en ocasiones, un solvente disuelve mayor  cantidad de soluto que la que es posible a esa temperatura (mayor que la  solubilidad); ese tipo de soluciones se  denomina  sobresaturada.  Una solución de este tipo no representa una situación estable  y  finalmente deriva en la solución saturada correspondiente y un exceso  de soluto sin disolver.
 En estas páginas puedes encontrar  las fórmulas para calcular las diferentes concentraciones en las soluciones:
 http://www.amschool.edu.sv/paes/science/concentracion.htm
http://www.monografias.com/trabajos71/concertacion-soluciones-quimica/concertacion-soluciones-quimica.shtml 
PARA CALCULAR LAS CONCENTRACIONES DE LAS SOLUCIONES
En soluciones hay 2 tipos de concentraciones las fisicas y las quimicas

CONCENTRACIONES FÍSICAS

% masa / masa = gramos de soluto / gramos de la solucion X 100
o tambien

Tantos gramos de soluto ------------> Tantos gramos de la sol.

X<--------------------------------------… 100g de Solucion
X= %m/m o %p/p



%masa / volumen = gramos de soluto / mL de la solucion X 100
o tambien:

Tantos gramos de soluto --------------> Tantos mL de la sol.
X<--------------------------------------… 100mLde Solucion
X= %m/v o %p/v


% volumen /volumen = mL de soluto / mL de la solucion X 100
o Tambien:

Tantos mL de soluto --------------> Tantos mL de la sol.
X<-------------------------------------- 100mLde Solucion
X= %v/v


% masa / masa solvente= gramos de soluto / gramos de solvente X 100
o tambien :

Tantos gramos de soluto ------------> Tantos gramos de solvente.
X<--------------------------------------… 100g de solvente
X= %m/mste o % p/pste


Partes por millon ( ppm)
Es la relacion de un gramo en un millon de mL o un miligramo en un litro.
Ejemplo :
10 mg NaOH ---------------> 0,700 mL de solucion
X --------------------------> 1 L de solucion
X= 14.98 ppm
Se utiliza mas que todo para soluciones diluidas .



CONCENTRACIONES QUíMICAS

Molaridad (M) = moles de soluto / Litros de la solucion
Tambien:
Molaridad (M)= Gramos de soluto / (Peso molecular de sto x Litros de la solucion).
En regla de 3 es :
Tantos moles de soluto --------------------> Tantos litros de la solucion
X-------------------------------------… 1L de la solucion
X= M


Molalidad (m) = moles de soluto / kg de solvente
Tambien:
Molalidad (m)= Gramos de soluto / (Peso molecular de sto x Kg de solvente).
en regla de 3 :
Tantos moles de soluto --------------------> Tantos kg del solvente
X-------------------------------------… 1kg de solvente
X= m


Normalidad (N) = n°equivalentes de soluto / L de la solucion
Tambien:
Normalidad (N) = Gramos de soluto / ( peso equivalente x L de la solucion)

Las Formulas de:
n°equivalentes = gramos de soluto / peso equivalente
peso equivalente = peso molecular soluto / equivalentes

NOTA: los equivalentes viene dados por lo siguiente:
Acidos es el numero de H+ que tenga, por ejemplo :
H2SO4 va a tener 2 equivalentes por los dos Hidrogenos

Bases es el numero de OH- que tenga , ejemplo :
NaOH va a tener solo 1 eq por que tiene solo un OH

Sales es el producto de la valencia del cation con el numero de subindice que posea , ejemplo :
Na2SO4 va a tener 2 eq porq la valencia del sodio es +1 y el subindice es 2 , 2x1 es igual a 2 .

En regla de 3 no haces tantos pasos pero debes tomar en cuenta lo anterior.

Tantos equivalentes de soluto --------------------> Tantos L de la solucion
X-------------------------------------… 1 litro de la solucion
X= N


Titulo (T)= es la relacion entre mg de una sustancia en 1 mL de esa solucion

Ejemplo
 Se disuelven 2 g de un soluto, llevando el volumen final a 500 ml.
Cual será la concentración expresada en %  m/ V y % m/m
% m/V = 2 / 500x 100 = 0,4 % m/V
Ahora si se quiere expresar el % m/m, es necesario averiguar cual es la masa de los 500  solución para lo que se requiere conocer la densidad. Si esta fuera 1,2g/ml, se tendría:  500 ml x 1,2 g/ml =600 g
 y % m/m = 2 /600 x 100 = 0,33 % m/m
 
Ejemplo: Se tiene una solución de ácido clorhídrico concentrado, 37 % m/m, d = 1,19  g/ml
En primer lugar se calcula a cuántos ml equivalen 100 gramos de solución.

V = m / d = 84,03 ml

Entonces  en un litro se tienen:   37 g / 84,06 ml x 1000 ml / l  = 440,16 g / l

Expresando los gramos en moles :

440,16 g / 36,5 g / mol = 12,06 M

Si la solución fuera molal en cálculo es más complejo, debiendo conocer la densidad y el peso molar.

Ejemplo: se tiene una solución 0, 085 m (molal), si el peso molar del soluto fuera 40 g / mol y la densidad 1,20 g / ml, calcular la molaridad de la misma.

Se sabe que tienen 0,085 moles de soluto por kg de solvente. Se debe hallar primero la masa de la solución y luego con la densidad, el volumen.

La masa de la solución es : masa de solvente + masa de soluto.

Masa de soluto = 0,085 moles x 40 g / mol = 3, 4 g

Por lo tanto masa de solución es: 1000 g + 3,4 g = 1003,4 g

Si la densidad es 1,20 g / ml, el volumen será:

V = 1003,4 g / 1,20 g/ml = 836,17 ml = 0,836 l

y la molaridad:http://www.alipso.com/monografias/solucquiade4/

M = 0,085 moles soluto / 0,836 l solución = 0,102 M

 Página con ejercicios:

http://www.slideshare.net/yolichavez/concentracin-de-las-soluciones-1028805

 http://www.unlu.edu.ar/~qui10017/Quimica%20COU%20muestra%20para%20IQ10017/Cap%A1tulo%20VIa.htm
 http://www.fisicanet.com.ar/quimica/q1_soluciones.php
 Ejemplos de Mezclas Homogéneas
Agua salada, Limonada, Agua y alcohol, Refresco, Agua y azúcar, Enjuague bucal, Agua y ioduro de potasio, Un café americano, Vinagre, Agua y acido clorhídrico, Vino, Agua y acetona, Una taza de té, Etanol y xilitol, Tinta, Acetato de etilo y hexano, Gasolina, Carbonato de bario con acido clorhídrico
Gelatina, Queso

MEZCLAS HETEROGENEAS.- Una mezcla heterogénea es aquella que posee una composición no uniforme en la cual se pueden distinguir a simple vista sus componentes y está formada por dos o más sustancias, físicamente distintas, distribuidas en forma desigual. Las partes de una mezcla heterogénea pueden separarse mecánicamente. Por ejemplo, las ensaladas, o la sal mezclada con arena.

Dispersión coloidal

En química un coloide, suspensión coloidal o dispersión coloidal es un sistema fisicoquímico formado por dos o más fases, principalmente: una continua, normalmente fluida, y otra dispersa en forma de partículas; por lo general sólidas. La fase dispersa es la que se halla en menor proporción de menor cantidad y volumen a la mezcla o materia

Suspensión

Suspensión se denomina a las mezclas que tienen partículas finas suspendidas en un líquido durante un tiempo y luego se sedimentan. En la fase inicial se puede ver que el recipiente contiene elementos distintos. Se pueden separar por medios físicos. Algunos ejemplos de suspensiones son el engrudo (agua con harina) y la mezcla de agua con aceite.
 Ejemplos de mezclas heterogéneas:
Tierra y agua, ensalada, Yogurt de fruta   (con trozos de frutas), Sopa de pasta, aceite y vinagre
medicinas infantiles (suspensiones), refresco con gas, Mermelada (con trozos de fresa)
Arena con agua, aceite y refresco, aderezo de ensalada, Huevo, Agua de tamarindo (después de un rato, la pulpa se alcanza a distinguir), Coctel de frutas, Salsa verde o roja, Tazón de frijoles, Agua con hielo
Picadillo, Coctel de camarones

3.- MÉTODOS DE SEPARACIÓN DE MEZCLAS
Separación en mezclas heterogéneas 
  • TAMIZADO:
Consiste en separar partículas sólidas de acuerdo con su tamaño. Prácticamente es utilizar coladores de diferentes tamaños en los orificios, colocados en forma consecutiva, en orden decreciente, de acuerdo al tamaño de los orificios. )
  • DECANTACIÓN:
Consiste en separar materiales de distinta densidad. Se fundamenta que el material más denso, al tener mayor masa por unidad de volumen, permanecerá en la parte inferior del envase.

  • LEVIGACIÓN
Es el lavado de sólidos, con una corriente de agua. Los materiales más liviano son arrastrados una mayor distancia, de esta manera hay una separación de los componentes de acuerdo a lo pesado que sean


  • IMANTACIÓN
Se fundamenta en la propiedad de algunos materiales de ser atraídos por un imán. El campo magnético del imán genera una fuerza atractora que si es suficientemente grande, los materiales se acercan a él. Para usar este método es necesario que uno de los componentes sea atraído y el resto no.
  • CROMATOGRAFÍA
La base de este método se encuentra en diferentes grados de absorción, a nivel superficial, que se pueden dar entre diferentes especies químicas.
  • FILTRACIÓN
Este método se fundamenta en que algunos de los componentes de la mezcla no es soluble en el otro.
Y consiste en pasar una mezcla a través de una placa porosa o un filtro, el sólido se quedara en la superficie del filtro mientras que el liquido pasara.



Separación en mezclas homogéneas

  • EVAPORACIÓN:
Consiste en calentar la mezcla hasta el punto de ebullición de uno de los componentes, y dejarlos hervir hasta que se evapore totalmente. Se emplea si no tenemos interés en utilizar el componente evaporado. Los otros componentes quedan en el envase.)
  • DESTILACIÓN:
Este procedimiento se fundamenta en la diferencia en el punto de ebullición de los componentes de a mezcla y posteriormente enfriamiento, hasta condensación, de los vapores. Se utilizan para separar diferentes líquidos, que se desean utilizar, a diferencia del método anterior. Los líquidos pueden ser solubles entre ellos.

  • CRISTALIZACION
El procedimiento de este método se inicia con la preparación de una solución saturad a una temperatura de aproximadamente 40º C, con la mezcla de la cual se desea separar los componentes, o el compuesto que se desea purificar, una vez preparado se filtra. Esta solución filtrada se enfría en un baño de hielo hasta que aparezcan los cristales del compuesto que se desea
http://cplosangeles.juntaextremadura.net/web/edilim/tercer_ciclo/cmedio/la_materia/las_mezclas/las_mezclas.html

  • CENTRIFUGACIÓN:
Se fundamenta en la fuerza que genera un cuerpo, por el giro a gran velocidad alrededor de un punto. La acción de dicha fuerza (centrífuga), se refleja en una tendencia por salir de la línea de rotación. De acuerdo al peso de cada componente sentiría el efecto con mayor o menor intensidad. Mientras más pesados mayor será el efecto.


  • CRISTALIZACION
El procedimiento de este método se inicia con la preparación de una solución saturad a una temperatura de aproximadamente 40º C, con la mezcla de la cual se desea separar los componentes, o el compuesto que se desea purificar, una vez preparado se filtra. Esta solución filtrada se enfría en un baño de hielo hasta que aparezcan los cristales del compuesto que se desea

 http://www.misecundaria.com/Main/MezclasCompuestosYElementos






domingo, 13 de mayo de 2012

TEMA 11.- (3) LA TEMPERATURA Y LOS ESTADOS DE LA MATERIA

5.- LA TEMPERATURA Y LOS ESTADOS DE LA MATERIA
 LA TEMPERATURA
Para completar lo que teneís en el libro
 La temperatura es una magnitud referida a las nociones comunes de caliente, tibio, frío que puede ser medida, especificamente, con un termómetro. En física, se define como una magnitud escalar relacionada con la energía interna de un sistema termodinámico, definida por el principio cero de la termodinámica. Más específicamente, está relacionada directamente con la parte de la energía interna conocida como "energía cinética", que es la energía asociada a los movimientos de las partículas del sistema, sea en un sentido traslacional, rotacional, o en forma de vibraciones. A medida de que sea mayor la energía cinética de un sistema, se observa que éste se encuentra más "caliente"; es decir, que su temperatura es mayor.

La unidad en el Sistema Internacional (SI), el el kelvin: Kelvin (K) El Kelvin es la unidad de medida del SI. La escala Kelvin absoluta es parte del cero absoluto y define la magnitud de sus unidades, de tal forma que el punto triple del agua es exactamente a 273,16 K.3
Aclaración: No se le antepone la palabra grado ni el símbolo º.
En españa utilizamos la escala Celsius, cuya unidad es el grado centígrado (ºC) y en los paises de habla inglesa la Fahrenheity la unidad es el grado fahrenheit (ºF). Las equivalencias entre las escalas son las siguientes: Simplificando
t (ºC) = t (K) - 273   
t (K) = t (ºC) + 273
t (ºF)= 1,8 . t (ºC) + 32
t (ºC) = t (ºF)- 32 / 1,8
Comparación de escala

Escalas termométricas


Para fijar los valores de temperatura se utilizan los llamados puntos fijos de un termómetro, que se corresponden con fenómenos que tienen lugar siempre para un mismo valor de la temperatura. 

Se toman por acuerdo como puntos fijos el punto de fusión del hielo y el punto de ebullición del agua. Una escala termométrica vendrá definida por los valores de temperatura asignados a los dos puntos, aceptando una variación lineal de la magnitud termométrica con la temperatura. 
 
Escala Celsius o centígrada . La escala Celsius o centígrada asigna el valor cero al punto de congelación o solidificación del agua y el valor 100 al punto de ebullición de la misma a la presión de una atmósfera. Cada unidad, debido a la variación lineal con la temperatura, será 1/100 del intervalo y se llama grado Celsius o centígrado (°C).

Escala Kelvin o absoluta. La escala absoluta o termodinámica utiliza como unidad de medida de temperatura el kelvin (K), cuyo valor coincide exactamente con el de 1 °C, ya que el intervalo entre los puntos fijos también se divide en 100 unidades. Sin embargo, se asigna el valor 273 al punto de fusión del hielo y, por tanto, el valor 373 al punto de ebullición del agua. En consecuencia, la relación entre la temperatura medida en Kelvin y la medida en grados centígrados es la siguiente:
T (K) = t (°C) + 273
es decir, se trata de la misma escala que la centígrada pero desplazada hacia abajo en 273 unidades.
La importancia de la escala absoluta radica en que es posible demostrar que el cero absoluto de temperatura se corresponde con la ausencia total de energía cinética interna del cuerpo considerado, es decir, con la inmovilidad total de sus partículas.

Escala Fahrenheit .  Otra escala de temperaturas, muy utilizada en Norteamérica fuera de los ambientes científicos es la escala Fahrenheit. En esta escala se efectúan 180 divisiones en el intervalo definido por los puntos fijos, asignando a estos puntos los valores 32 y 212, respectivamente.
La relación entre la temperatura expresada en grados centígrados y la correspondiente en grados Fahrenheit.
t (°F) = 1,8 t (°C) + 32
La escala absoluta correspondiente a la Fahrenheit, es decir, con unidades iguales, es la escala Rankine, cuyos puntos fijos son 491,69 y 671,67. Evidentemente, el intervalo en ambos casos es de 180 unidades. La relación entre la temperatura expresada en ºF y ºR es la siguiente:
t (°R) = t (°F) + 491

COMO SE MIDE LA TEMPERATURA
La medimos mediante termómetros

http://i730.photobucket.com/albums/ww302/andrea7074/termometro.jpg

http://ciclobasico.com/el-termometro1/
http://legacy.spitzer.caltech.edu/espanol/edu/thermal/measure_sp_06sep01.html
 http://www.tiposdetermometros.net/
 PROBLEMAS DE TEMPERATURA
PROBLEMAS PARA PRACTICAR LAS ESCALAS TERMOMÉTRICAS
 
1- Transforme 50 °C en grados Fahrenheit.
2- Transforme 20 °C en grados Fahrenheit.
3- Transforme según la ecuación de conversión : a) 15 °C a °F; y b) -10 °F a °C.
4- La temperatura en un salón es 24 °C. ¿Cuál será la lectura en la escala Fahrenheit?.
5- Un médico inglés mide la temperatura de un paciente y obtiene 106 °F. ¿Cuál será la lectura en la escala Celsius?.

6.- Completar el siguiente cuadro; utilizando la ecuación de conversión:
CENTIGRADO
FAHRENHEIT
KELVIN

200 °C




40 ° F


-5 °C





400 °K






 
7.- Complete el siguiente cuadro :
KELVIN

CENTIGRADO
FAHRENHEIT


40 °C




20 °F
450 °K



100 °K

400 °K





Estos ejercicios han sido extraidos de la pag. de  "Fisicanet"

LOS ESTADOS DE LA MATERIA
 La materia se presenta en tres estados o formas de agregación: sólido, líquido y gaseoso.
Dadas las condiciones existentes en la superficie terrestre, sólo algunas sustancias pueden hallarse de modo natural en los tres estados, tal es el caso del agua.
La mayoría de sustancias se presentan en un estado concreto. Así, los metales o las sustancias que constituyen los minerales se encuentran en estado sólido y el oxígeno o el CO2 en estado gaseoso:

  • Los sólidos: Tienen forma y volumen constantes. Se caracterizan por la rigidez y regularidad de sus estructuras.
  • Los líquidos: No tienen forma fija pero sí volumen. La variabilidad de forma y el presentar unas propiedades muy específicas son características de los líquidos.
  • Los gases: No tienen forma ni volumen fijos. En ellos es muy característica la gran variación de volumen que experimentan al cambiar las condiciones de temperatura y presión.

Esta página esta muy bien para estudiar este apartado y los siguientes del tema:

http://concurso.cnice.mec.es/cnice2005/93_iniciacion_interactiva_materia/curso/materiales/estados/estados1.htm

 http://www.educa.madrid.org/portal/c/portal/layout?p_l_id=2288.210
 http://cplosangeles.juntaextremadura.net/web/edilim/tercer_ciclo/cmedio/la_materia/los_cambios_de_estado/los_cambios_de_estado.html
 http://www.iesaguilarycano.com/dpto/fyq/mat/mat3.htm

6.- CARACTERÍSTICAS DE LOS ESTADOS DE LA MATERIA
http://www.wikisaber.es/Contenidos/LObjects/states_of_matter/index.html
SÓLIDOS
Los objetos en estado sólido se presentan como cuerpos de forma compacta y precisa; sus átomos a menudo se entrelazan formando estructuras estrechas definidas, lo que les confiere la capacidad de soportar fuerzas sin deformación aparente. Los sólidos son calificados generalmente como duros y resistentes, y en ellos las fuerzas de atracción son mayores que las de repulsión. La presencia de pequeños espacios intermoleculares caracteriza a los sólidos dando paso a la intervención de las fuerzas de enlace que ubican a las celdillas en una forma geométrica.
Las sustancias en estado sólido presentan características como:
  • Cohesión elevada.
  • Forma definida.
  • Incompresibilidad (no pueden comprimirse).
  • Resistencia a la fragmentación.
  • Fluidez muy baja o nula.
  • Algunos de ellos se subliman (yodo).
  • Volumen constante (hierro).
Si se incrementa la temperatura, el sólido va perdiendo forma hasta desaparecer la estructura cristalina, alcanzando el estado líquido. Característica principal: la capacidad de fluir y adaptarse a la forma del recipiente que lo contiene. En este caso, aún existe cierta unión entre los átomos del cuerpo, aunque mucho menos intensa que en los sólidos.
El estado líquido presenta las siguientes características:
  • Cohesión menor.
  • Movimiento energía cinética.
  • No poseen forma definida.
  • Toma la forma de la superficie o el recipiente que lo contiene.
  • En el frío se contrae (exceptuando el agua).
  • Posee fluidez a través de pequeños orificios.
  • Puede presentar difusión.
  • Volumen constante.  
  • http://www.slideshare.net/hevelu/el-estado-lquido 
GASES
Incrementando aún más la temperatura, se alcanza el estado gaseoso. Las moléculas del gas se encuentran prácticamente libres, de modo que son capaces de distribuirse por todo el espacio en el cual son contenidos.
El estado gaseoso presenta las siguientes características
  • Cohesión casi nula.
  • No tienen forma definida.
  • Su volumen es variable dependiendo del recipiente que lo contenga.
  • Pueden comprimirse fácilmente.
  • Ejercen presión sobre las paredes del recipiente contenedor.
  • Las moléculas que lo componen se mueven con libertad.
  • Ejercen movimiento ultra dinámico.
 http://said7.webs.com/

7.- LOS CAMBIOS DE ESTADO
 File:Estados.svg
LA MATERIA CAMBIA DE ESTADO

Cambio de estado es el proceso mediante el cual las sustancias pasan de un estado de agregación a otro. El estado físico depende de las fuerzas de cohesión que mantienen unidas a las partículas. La modificación de la temperatura o de la presión modificará dichas fuerzas de cohesión pudiendo provocar un cambio de estado.
    El paso de un estado de agregación más ordenado a otro más desordenado (donde las partículas se mueven con más libertad entre sí) se denomina cambio de estado progresivo. Cambios de estado progresivos son:
-         El paso de sólido a líquido que se llama fusión. Ejemplo el hielo a agua líquida se funde.
-         El paso de líquido a gas que se llama vaporización. Ejemplo el agua líquida pasa a vapor de agua: evaporándose lentamente (secándose un recipiente o una superficie con agua) o al entrar en ebullición el líquido (hierve).
-         El paso de sólido a gas que se llama sublimación. Ejemplo el azufre o el yodo sólidos al calentarlos pasan directamente a gas.
    El paso de un estado de agregación más desordenado a otro más ordenado se denomina cambio de estado regresivo. Cambios de estado regresivos son:
-         El paso de gas a líquido que se llama condensación. Ejemplo en los días fríos de invierno el vapor de agua de la atmósfera se condensa en los cristales de la ventana que se encuentran fríos o en el espejo del cuarto de baño.
-         El paso de líquido a sólido que se llama solidificación. Ejemplo el agua de una cubitera dentro del congelador se solidifica formando cubitos de hielo.
-         El paso de gas a sólido que se denomina solidificación regresiva.

  • Fusión: Es el paso de un sólido al estado líquido por medio de la energía térmica; durante este proceso isotérmico (proceso que absorbe energía para llevarse a cabo este cambio) hay un punto en que la temperatura permanece constante. El "punto de fusión" es la temperatura a la cual el sólido se funde, por lo que su valor es particular para cada sustancia. Cuando dichas moléculas se moverán en una forma independiente, transformándose en un líquido.
  • Solidificación: Es la transformación de un líquido a sólido por medio del enfriamiento; el proceso es exotérmico. El "punto de solidificación" o de congelación es la temperatura a la cual el líquido se solidifica y permanece constante durante el cambio, y coincide con el punto de fusión si se realiza de forma lenta (reversible); su valor es también específico.
  • Vaporización: es el proceso físico en el que un líquido pasa a estado gaseoso. Si se realiza cuando la temperatura de la totalidad del líquido iguala al punto de ebullición del líquido a esa presión al continuar calentando el líquido, éste absorbe el calor, pero sin aumentar la temperatura: el calor se emplea en la conversión del agua en estado líquido en agua en estado gaseoso, hasta que la totalidad de la masa pasa al estado gaseoso. En ese momento es posible aumentar la temperatura del gas.
La evaporación se produce a cualquier temperatura, aunque es mayor cuanto más alta es la temperatura. Es importante e indispensable en la vida cuando se trata del agua, que se transforma en vapor de agua y al condersarse en nube, volviendo en forma de lluvia, nieve, niebla o rocío.
Cuando existe un espacio libre encima de un líquido caliente, una parte de sus moléculas está en forma gaseosa, al equilibrase, la cantidad de materia gaseosa define la presión de vapor saturante, la cual no depende de la temperatura.
  • Condensación: Se denomina condensación al cambio de estado de la materia que se encuentra en forma gaseosa a forma líquida. Es el proceso inverso a la vaporización. Si se produce un paso de estado gaseoso a estado sólido de manera directa, el proceso es llamado sublimación inversa. Si se produce un paso del estado líquido a sólido se denomina solidificación.
  • Sublimación: es el proceso que consiste en el cambio de estado de la materia sólida al estado gaseoso sin pasar por el estado líquido. Al proceso inverso se le denomina Cristalización inversa; es decir, el paso directo del estado gaseoso al estado sólido. Un ejemplo clásico de sustancia capaz de sublimarse es el hielo seco.
Es importante hacer notar que en todas las transformaciones de fase de las sustancias es de que éstas no se transforman en otras sustancias ni sus propiedades, solo cambia su estado físico.
Las diferentes transformaciones de fase de la materia en este caso las del agua son necesarias y provechosas para la vida y el sustento del hombre cuando se desarrollan normalmente.
Los cambios de estado están divididos generalmente en dos tipos: progresivos y regresivos.
Cambios progresivos: Vaporizació, fusión y sublimación progresiva. Cambios regresivos: Condensación, solidificación y sublimación regresiva

Condensación
En física, proceso en el que la materia pasa a una forma más densa, como ocurre en la licuefacción del vapor. La condensación es el resultado de la reducción de temperatura causada por la eliminación del calor latente de evaporación; a veces se denomina condensado al líquido resultante del proceso.
 
La eliminación de calor reduce el volumen del vapor y hace que disminuyan la velocidad de sus moléculas y la distancia entre ellas. Según la teoría cinética del comportamiento de la materia, la pérdida de energía lleva a la transformación del gas en líquido. La condensación es importante en el proceso de destilación y en el funcionamiento de las máquinas de vapor, donde el vapor de agua utilizado se vuelve a convertir en agua en un aparato llamado condensador.
 
En meteorología, tanto la formación de nubes como la precipitación de rocío, lluvia y nieve son ejemplos de condensación.
 
En química, la condensación es una reacción que implica la unión de átomos dentro de una misma molécula o en moléculas diferentes. El proceso conduce a la eliminación de una molécula simple, por ejemplo de agua o alcohol, para formar un compuesto nuevo más complejo, frecuentemente de mayor peso molecular que cualquiera de los compuestos originales.

Evaporación
Conversión gradual de un líquido en gas sin que haya ebullición. Las moléculas de cualquier líquido se encuentran en constante movimiento. La velocidad media (o promedio) de las moléculas sólo depende de la temperatura, pero puede haber moléculas individuales que se muevan a una velocidad mucho mayor o mucho menor que la media.
A temperaturas por debajo del punto de ebullición, es posible que moléculas individuales que se aproximen a la superficie con una velocidad superior a la media tengan suficiente energía para escapar de la superficie y pasar al espacio situado por encima como moléculas de gas.
Como sólo se escapan las moléculas más rápidas, la velocidad media de las demás moléculas disminuye; dado que la temperatura, a su vez, sólo depende de la velocidad media de las moléculas, la temperatura del líquido que queda también disminuye. Es decir, la evaporación es un proceso que enfría; si se pone una gota de agua sobre la piel, se siente frío cuando se evapora.
En el caso de una gota de alcohol, que se evapora con más rapidez que el agua, la sensación de frío es todavía mayor. Si un líquido se evapora en un recipiente cerrado, el espacio situado sobre el líquido se llena rápidamente de vapor, y la evaporación se ve pronto compensada por el proceso opuesto, la condensación.
Para que la evaporación continúe produciéndose con rapidez hay que eliminar el vapor tan rápido como se forma. Por este motivo, un líquido se evapora con la máxima rapidez cuando se crea una corriente de aire sobre su superficie o cuando se extrae el vapor con una bomba de vacío.


 Diferencias entre evaporación y ebullición.
  El cambio de estado de líquido a gas se denomina vaporización. La vaporización puede tener lugar de dos formas:
-         A cualquier temperatura, el líquido pasa lentamente a estado gaseoso, el proceso se denomina evaporación. El paso es lento porque son las partículas que se encuentran en la superficie del líquido en contacto con la atmósfera las que se van escapando de la atracción de las demás partículas cuando adquieren suficiente energía para liberarse. Partículas del líquido que se encuentran en el interior no podrán recorrer demasiado antes de ser capturadas de nuevo por las partículas que la rodean.
-         A una determinada temperatura determinada se produce el paso de líquido a gas en todo el volumen del líquido el proceso se denomina ebullición. Cualquier partícula del interior o de la superficie adquiere suficiente energía para escapar de sus vecinas, la energía se la proporciona la fuente calorífica que le ha llevado a dicha temperatura.
    Por tanto, el cambio de estado denominado vaporización se puede producir de alguna de estas formas:
-         Por evaporación que tiene lugar en la superficie del líquido, es lenta y  a cualquier temperatura, aunque aumenta la evaporación con la temperatura. Un ejemplo lo tenemos con el agua que se extiende por el suelo o la ropa mojada tendida, el proceso de secado es una evaporación del agua líquida. El agua contenida en un vaso también termina por desaparecer (se evapora), aunque la evaporación será mayor si aumentamos la superficie de contacto entre el agua y la atmósfera (por ejemplo echando el contenido del vaso en un plato).
-         Por ebullición que tiene lugar a una determinada temperatura (temperatura de ebullición), es tumultuosa y tiene lugar en cualquier parte del líquido (superficie o interior). El ejemplo lo tenemos en el agua, a medida que la calentamos la evaporación aumenta y llega un momento en el que salen burbujas de vapor de agua de cualquier parte del líquido y de forma tumultuosa (desordenadamente).
 LA TEMPERATURA EN LOS CAMBIOS DE ESTADO
Mientras tiene lugar un cambio de estado, la temperatura no varía se mantiene constante hasta que el cambio de estado se complete.
-         El cambio de estado de sólido a líquido (fusión) tiene lugar a la temperatura de fusión que coincide con la temperatura de solidificación (cambio de estado de líquido a sólido, solidificación).
-         El cambio de estado de líquido a gas que ocurre de forma tumultuosa tiene lugar a la temperatura de ebullición y coincide con la temperatura de condensación (gas a líquido).
    Mientras dure el cambio de estado, la energía implicada (calentando o enfriando) se utiliza en cambiar el estado de agregación de las partículas, manteniéndose constante la temperatura (la energía cinética media de las partículas no varía).

El punto de fusión es la temperatura a la cual la materia pasa de estado sólido a estado líquido, es decir, se funde.
Al efecto de fundir un metal se le llama fusión (no podemos confundirlo con el punto de fusión). También se suele denominar fusión al efecto de licuar o derretir una sustancia sólida, congelada o pastosa, en líquida.
En la mayoría de las sustancias, el punto de fusión y de congelación, son iguales. Pero esto no siempre es así: por ejemplo, el Agar-agar se funde a 85 °C y se solidifica a partir de los 31 °C a 40 °C; este proceso se conoce como histéresis.

El punto de ebullición es aquella temperatura en la cual la materia cambia de estado líquido a gaseoso, es decir se ebulle. Expresado de otra manera, en un líquido, el punto de ebullición es la temperatura a la cual la presión de vapor del líquido es igual a la presión del medio que rodea al líquido. En esas condiciones se puede formar vapor en cualquier punto del líquido.
La temperatura de una sustancia o cuerpo depende de la energía cinética media de las moléculas. A temperaturas inferiores al punto de ebullición, sólo una pequeña fracción de las moléculas en la superficie tiene energía suficiente para romper la tensión superficial y escapar. Este incremento de energía constituye un intercambio de calor que da lugar al aumento de la entropía del sistema (tendencia al desorden de las partículas que lo componen).
El punto de ebullición depende de la masa molecular de la sustancia y del tipo de las fuerzas intermoleculares de esta sustancia. Para ello se debe determinar si la sustancia es covalente polar, covalente no polar, y determinar el tipo de enlaces


Estados de agregación de la materia